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Abstract. A phase integral approximation, based on the notion that large N is a semiclassical 
limit, is presented for spherically symmetric systems of the Coulomb type. Since the 
dynamical group SO(2, 1) is the spectrum generating group for the radial point Coulomb 
problem and the Casimir operators of O ( N )  and SO(2, 1) are coupled, we write a path 
integral expression of the Green function in terms of SO(2, 1) coherent states. The resulting 
phase integral approximation is applied to the Yukawa potential and the Coulomb plus 
linear r confining potential. 

1. Introduction 

In recent years a new technique has become popular for solving the Schrodinger 
equation for energy eigenvalues and eigenfunctions. We refer here to the so-called 
1 / N  expansion which has proved to be of great use in quantum mechanics and field 
theory to explore regions beyond the reach of ordinary coupling constant perturbation 
theory (see Witten 1980). The usual method of implementing the large-N approxima- 
tion in ordinary quantum mechanics is to consider the O( N )  symmetric extension of 
the system of interest and employ saddle point methods, under the assumption of large 
N, to obtain ground-state energy levels. As pointed out by Witten (1980), the accuracy 
when extrapolated to N = 3 is quite modest. However, Mlodinow and Papanicolaou 
(1980) have shown that the accuracy may be improved by retaining only a few terms 
in the perturbation series if 1/ N is the expansion parameter. Their work is based on 
the use of the oscillator-type representations of SU(1 , l )  and the fact that the Casimir 
invariants of O ( N )  and SU(1 , l )  are coupled. They then realised the SU(1, 1) Lie 
algebra Ci la Holstein-Primakoff so that the natural expansion parameter is ( I +  
N/2)-*’*, 1 being the usual angular momentum quantum number. 

The method described above yields impressive results for the low level energy 
eigenvalues for various systems such as anharmonic oscillators and even the hydrogen 
atom in a strong magnetic field (Bender et a1 1982). The method is sometimes referred 
to as a semiclassical perturbation theory, where the expansion is made about the 
minimum of the effective potential in the O ( N )  symmetric version of the theory. 
However, it is also possible to understand the large-N limit as a classical limit in the 
sense that h + O  is a classical limit (Yaffe 1982). In fact Shankar (1980), using the 
Bioch coherent states, has shown that the large-N limit viewed in this way leads to a 
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Bohr-Sommerfeld ( BS) quantisation rule for Hamiltonians expressed in terms of SU( n) 
generators in the symmetrised N-fold tensor product of the fundamental representation. 
The method is applied to the pseudospin Hamiltonian of Lipkin er a1 (1965) for N = 30 
and 50 to obtain energy eigenvalues typically accurate to two decimal places. Following 
their example we have previously considered a phase integral approximation, associated 
with SU( 1, 1) coherent states (cs) in the limit of large N, to obtain the energy eigenvalues 
for even power anharmonic oscillators (Gerry et a1 1983). In this case the phase 
integral approximation is obtained from the path integral written over the SU( 1, 1) cs 
(Gerry and Silverman 1982, Gerry 1982). The accuracy obtained in that calculation 
was comparable to the J W K B  calculations for the excited states. 

Now the phase integral approximation discussed above involves a realisation of 
the SU(1, 1) - SO(2, 1) generators which are of the oscillator type; in fact, they are 
quadratic in the boson operators a and a+.  However, another realisation of the Lie 
algebra exists which may be associated with the Coulomb problem (see Barut 1972). 
In this paper we wish to use this realisation to obtain a large-N-type phase integral 
approximation for Coulombic systems. It turns out that the formulation of the phase 
integral approximation is not as straightforward in this case as it was for the anharmonic 
oscillators. For one thing, the path integral must actually be written for the Green 
function instead of the propagator. Also it is convenient, for the purpose of calculation, 
to introduce a local fictitious time parameter, a trick which several authors have used 
to calculate the Coulomb Green function via path integrals (see Dum and Kleinhert 
1979, Ho and Inomata 1982). In fact, one of the present authors has used this time 
modification trick to evaluate the Coulomb Green function in terms of the SO(2, 1) 
coherent states (Gerry 1984). (We refer to the states as SO(2, l )  coherent states as the 
relevant representations are those of SO(2, l) .)  This will be the starting point for the 
present calculation. 

We shall consider two potentials in this paper, both with spherical symmetry. First 
we consider the simple screened Coulomb potential of the Yukawa type and secondly 
the Coulomb potential with a term linear in r. This latter potential is sometimes referred 
to as the charmonium potential in view of its relevance to bound states of qc& (Eichten 
et a1 1978). We should stress at this point that our goal here is not to obtain energy 
eigenvalues of high accuracy but rather to show that one is justified in taking the 
large- N limit as a semiclassical approximation for the realisation and representations 
of SO(2, 1) relevant to the Coulomb problem. 

The layout of the paper is as follows. In § 2 we briefly review the Coulomb 
realisation of SO(2, 1) and the coherent states for the associated representations. In 
§ 3 we present the path integral and discuss the phase integral for the large-N limit. 
In § 4 the approximation is applied to the two potentials discussed above. Section 5 
closes the paper with a few brief remarks. An appendix containing some useful results 
is included. 

2. Coulomb realisation of SO(2,l) and coherent states 

We first consider the SO(2, 1) non-variance group for the Coulomb problem extended 
to N dimensions. By ‘Coulomb’ problem, however, we mean the a / r  potential where 



Phase integral approximation for Coulomb-type systems 3799 

rather than the potential which satisfies Gauss’s law in N dimensions. As pointed out 
by Barut and Kitagawara (1981)  this may also be interpreted as an N / 3  body problem 
(if N is a multiple of three). Here this distinction is immaterial. The potential a / r  is 
now invariant under O( N)  transformations. 

With p the N-dimensional momentum vector, the S O ( 2 ,  1) algebra is realised as 

K~ = i( rp’ + r ) 

K ,  = i( rp2 - r )  

( 2 . 2 ~ )  

( 2 . 2 b )  

( 2 . 2 c )  K ,  = r - p  - f i (N - 1). 

c2= K:-  K : -  K :  

The Casimir operator of SO(2,  1 )  

= L 2 + i (  N - l ) ( f N  - 1 )  ( 2 . 3 )  

where L2 is the Casimir operator of O( N). The relevant representations are the unitary 
irreducible representations ( U I R )  D + ( k ) ,  where k is the Bargmann index such that the 
eigenvalue of C, is given as k (  k - 1 ) .  Since L2 has the eigenvalue I( 1 + N - 2 ) ,  we obtain 

k ,  =+{1* [1+41(1+ N - 2 )  + 3 ( N  - 1 ) ( i N  - 1 ) ] ” 2 } .  (2 .4)  

For the representation to be a U I R  we must have k > 0. For N = 3 we obtain k-  = -1  
or k ,  = I +  1 .  Since only k ,  satisfies this condition we hereafter drop the negative root. 

The basis states of the Df( k )  representation are given by 1 n,, k )  such that 

Koln,, k )  = (n, + k)ln, ,  k )  ( 2 . 5 )  

where n, is the radial quantum number. As is well known, the energy eigenvalue 
problem is formulated as 

iZ(E)I$) = 0 ( 2 . 6 )  

where 

hc E 

and where 

H =  

The bound-state spectrum is obtained by transforming away the non-compact generator 
K ,  by the tilting operation 

R ( E )  =exp(-iOK,)fL(E) exp(iOK,) 

= ( - 2 E / p ) ’ ” K , -  ( 2 . 9 )  
if 0 is taken as 0 = ln[(-2E/p)’”].  Then using the SO(2,  1)  state In,, k )  one obtains 
the energy eigenvalue 

E,, = - k a 2 / 2 n 2  (2 .10)  

where n = n, + k. Obviously this reduces to the usual formula if N = 3. 
Coherent states may be introduced on SO(2,  l ) ,  according to Perelomov (1975) ,  as 

(2 .11)  15, k )  = exp(aK+- a*K-)IO, k )  
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where K, = K 1  i i L ,  a = -+e-‘‘ and 5 = -tanh($T) e-’‘ where T and cp are group 
parameters analogous to the Euler angles. Since the SO(2, 1)  states are complete as 

the coherent states of (2.11) may be expanded as 

Unity is resolved as 

where 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

These properties are of course shared by the ordinary coherent states (Glauber 1963). 
Finally we point out that we may define an auxiliary or  physical coherent state 15,) 
as opposed to the group state 15, k )  by the relation 

lG)= exp(iBK,)/(, k ) .  (2.18) 

The angle 8 is to be adjusted later, but we note that equations (2.14)-(2.17) are unaltered 
by the replacement 15, k )  + lg). 

3. Path integral and phase integral approximation 

Consider the Hamiltonian 

where U l ( r )  and U i ( r )  are polynomial in r. We follow our previous work (Gerry 
1984) and write the resolvent operator as 

G ( E )  = -i exp[-i(H - E ) T ]  d~ (3.2) lor 
and then write the Green function for a particular k sector as - 

Gk(5”, 5‘; E )  =(5”,  ~ I G ( M x  
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where - - 
P:(.$”, 5’; T )  =(<“, kl.exp[-i(H-E).r]l,$’, k). (3.4) 

We may think of P:(t”, 5‘; T )  as the propagator for the effective zero energy Hamil- 
tonian H - E. The corresponding time evolution operator is therefore 

% ( T )  = exp[-i.r(H - E ) ] .  (3.5) 

From equations (2.2) and (3.1) this may be written 

~ ( 7 )  = exp[- i (T/ r ) i i (~) ]  (3.6) 

where 

ii( E )  = ( 2 p  ) - I (  KO + K , )  - E ( KO - K ,  ) - (Y U ,  ( KO - K , )  + U,( KO - K , )  (3.7) 

and where U,( r )  = rU;( r ) .  

the propagator of equation (3.4) may be expressed as the path integral 
Now using techniques discussed elsewhere (Gerry and Silverman 1982, Gerry 1984), 

where 

W 5 , 5 * )  =(5, klWE)/5,  k) 
and 

R ( E )  = exp(-iBK,)h(E) exp(iBK,) 

= ( 2 p ) - ’  ee(Ko+ KI)-e-’E(Ko- K , )  

- aUl[e-’( K O  - K , ) ]  + &[e-’( K O -  K ] ) ] .  

Now we introduce the fictitious time parameter c r ( t )  as 

(3.9) 

(3.10) 

(3.11) 

and write 

P:(f’, 5‘; 7)  = lox 6( T - I ~  r (s)  ds)P:((”, 5’; cr) dcr (3.12) 

so that 

G k ( f ’ ,  5’; E )  = -i P:([”, 5’; U) d a  I 
where 

(3.13) 

The prime indicates the derivative with respect to U, the new time variable. Thus the 
‘classical’ mechanics is now based on the Lagrangian 
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In terms of T and cp this becomes 

2 = k(cosh T ) $  - X( T, c p )  

where an overall total derivative 4 has been dropped. 

(case I) 

(3.16) 

We now specify the functions U ,  and U,. For the screened potential we have 

U,( r )  = e-Ar (3.17a) 

U,( r )  = 0 (3.17b) 

and for the charmonium potential we have (case 11) 

U , ( r )  = 1 ( 3 . 1 8 ~ )  

U,( r )  = Ar2 .  (3.186) 

Thus we have for case I 

O , ( E )  = ( 2 ~ ) - ‘  ee (Ko+  K , )  - E e-’(Ko-KI)- (Y exp[-A e-@(Ko- K , ) ]  

and for case I1 

R,,(E)  = (2p)-’  ee (Ko+  K , )  - E  e-’(&- K , )  - (Y + A  e-”(Ko- K , ) ~ .  (3.20) 

We must make a choice for the tilting angle 8. With 8 = ln[(-2E/p)’/’] as before we 
have 

O i - ’ ( E )  = ( - 2 E / p ) ’ / 2 K 0 - ~  e x p [ - A ( - j ~ / 2 E ) ” ~ ( K , - K , ) ]  (3.21) 

(3.19) 

and 

O\y)( E )  = ( -2E/  p)’”Ko - (Y + (-p/2E)A (KO - K,)’. (3.22) 

This is the usual transformation for the bound-state case when E < O .  However, for 
the charmonium potential, the energy can also be positive. It proves convenient to 
choose the value of 8 that would eliminate the compact generator KO from equation 
(2.7). Thus with e=ln[(2E/p)’ / ’ ]  we obtain, for the case E >0,  

(3.23) 

We need the matrix elements of various operators such as K O ,  K1 and ( K O -  K,)’ 
in terms of the coherent states. From the results of previous work (Gerry et a1 1983) 
we have 

(3.24) 

(3.25) 

n;:’(E) = (2E/p)I%, - a + ( p / 2 E ) ( K 0 -  K1)*. 

(6, k /Kol ( ,  k )  = k cosh T 

(6, k/K,16,  k )  = - k  sinh T cos cp. 

Also, using these results we may show that 

(3.26) 

where ( r ) ’  from equations (3.4) and (3.25) is of the order k 2 .  Since for large N k is 
large, we thus follow the standard large-N practice that 

( r 2 )  = (r)’ 

= k 2 (  cosh T + sinh T cos cp) ’ .  (3.27) 
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For the Yukawa potential we must evaluate the quantity 

(5, kl eXp[-A(-p/2E)’’2(Ko- K A I k  k) (3.28) 

in the limit of large k. In fact, this may be treated as the matrix element of a finite 
group transformation of the parabolic type with an analytic continuation (Gerry and 
Laub 1984, 1985). However, we show (in the appendix) that in the large-k (or N )  
limit we may simply use 

(5, kl exP[-A(-p/2E)’/2(Ko- KJ115, k) 
-exp[-A(-p/2E)”’(5, WO- ~ ~ 1 5 ,  k)I (3.29) 

=exp[-A(-p/2E)”’k(cosh r+s inh  r cos cp)]. (3.30) 

Thus using these results the energy relations are, since fl is essentially a zero-energy 
Hamiltonian, 

2“tei-’=(-2E/p)’’’k cosh 7 - a  

x exp[-A (-p/2E)’/’k(cosh r + sinh T cos cp)]  = 0. (3.31) 

Similarly 

X!;’=(-2E/p)’’’kcosh r - a+A( -p /2E)k2(cosh  r+s inh  r cos cp)’=O (3.32) 

Xi:’=-(2E/p)1’2ksinh T C O S  cp+A(p/2E)k2(cosh r+s inh  r c o s  cp)’=O. (3.33) 

(3.34) 

Now, from equation (3.16), we have the canonical momentum as 

p = a y / a c p  = k cosh 7. 

We therefore make the ansatz that it satisfies the Bohr-Sommerfeld quantisation rule 

(3.35) p d p  = 2 m  n = 1,2,  3, . . . I 
or 

cosh r dcp = 2 m l k .  I (3.36) 

Thus cosh r is essentially a momentum and 1/ k plays the role of Planck’s constant h. 
To check that this makes sense we consider the case where A =0 ,  so that 

2Z’(-’=(-2E//”)’’2k cosh T - - ( Y = O  

cosh r = a [ / ~ ( - 2 E / p ) ” ~ ] - ’  and the phase integral rule give 

2 r r a / k ( - 2 E / ~ ) ’ i ’ = 2 m / k  

or 

E,, = - p a 2 / 2 n 2  

(3.37) 

(3.38) 

(3.39) 
the correct point Coulomb energy levels. We note that the orbit in polar phase space 
(cosh r, cp) is just a circle. On the other hand, when A = 0 and for E > 0 we have, from 
equation (3.33), 

Xp(+’= -(2E/p)”’k sinh r cos cp - a  = O .  

In this case the trajectory in phase space does not close and the Bohr-Sommerfeld 
quantisation rule cannot be applied, consistent with the fact that E > 0 states are not 
bound states. 
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4. Applications 

In this section our phase integral approximation, equation (3.36), is applied to the 
Yukawa potential case ( p  = 1) with the energy constraint condition of equation (3.31), 
and to the Coulomb plus linear potential ( p  = f) with the energy constraints of equation 
(3.32) for E < 0 or (3.33) for E > 0. 

The results for the Yukawa s states are in table 1 .  For comparison we have also 
included the exact results along with the usual JWKB calculations. For low A values 
ours are in fairly close agreement with the other calculations but tend to be slightly 
on the high side. Nevertheless it is clear that our approximation method yields results 
indicating that large-N (or large-k) approximations have some validity as semiclassical 
approximations outside of the pseudospin and oscillator type of approximations 
considered previously. For I Z O ,  the orbits in phase space are quite complicated in 
that they do not encompass the origin (at T = 0). The phase integral is therefore much 
more complicated to calculate, although in principle it is possible to do so. Such 
calculations were performed in our previous work on anharmonic oscillators (Gerry 
et a1 1983). In the present case, however, the maximum angular extensions are difficult 
to locate numerically. 

Table 1. Energy eigenvalues for the Yukawa potential ( I  = 0 only). 

A n E (exact) E ( C S )  YO error E ( J W K B )  O/O error 

0.025 1 
2 
3 
4 

0.050 1 
2 
3 
4 

0.10 1 
2 
3 

0.20 1 
2 

-0.475 4 
-0.101 8 
-0.034 33 
-0.012 51 
-0.451 8 
-0.081 77 
-0.019 35 
-0.003 09 
-0.407 1 
-0.049 93 
-0.003 21 
-0.326 8 
-0.012 11 

-0.475 0 
-0.101 6 
-0.034 21 
-0.012 4 
-0.450 0 
-0.081 28 
-0.018 99 
-0.002 87 
-0.399 8 
-0.048 36 
-0.002 46 
-0.297 8 
-0.008 45 

0.08 
0.20 
0.35 
0.80 
0.40 
0.60 
1.9 
7.1 
1.8 
3.1 

23.0 
8.9 

30.2 

-0.475 4 
-0.101 7 0.10 
-0.034 30 0.09 
-0.012 48 0.24 
-0.451 7 0.02 
-0.081 67 0.12 
-0.019 28 0.36 
-0.003 05 1.3 
-0.4066 0.12 
-0.049 62 0.62 
-0.003 08 4.0 
-0.325 1 0.52 
-0.001 147 5.3 

For the Coulomb plus linear potential the results are in general agreement for the 
excited states (see table 2 ) .  We note that in this case the results tend to be lower 
whereas for the Yukawa potential the calculations give higher results than for the exact 
calculations. This tendency is also evident in the J W K B  calculations though the errors 
are smaller. 

5. Conclusions 

In this paper we have applied our large-N phase integral approximation based on 
coherent states of SO(2, 1 )  (SU( 1, 1 ) )  to problems of the Coulomb type. This requires 
a different realisation of the Lie algebra and a different representation than was used 
for a similar application for the perturbed oscillator problems treated before (Gerry 
et a1 1983). 
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Table 2. Energy eigenvalues for the Coulomb plus linear potential. 

A E,, E (exact) E (cs) YO error E ( J W K B )  % error 

0.01 E , ,  -0.221 -0.229 -3.6 -0.223 -0.90 
E,, 0.142 0.135 -4.9 0.141 -0.70 
E,, 0.286 0.279 -2.5 0.286 

E,z 0.251 0.241 -4.0 0.251 
E,Z 0.366 0.356 -2.7 0.366 

E 3 2  0.102 0.090 -12.0 0.102 

1 E, ,  1.398 1.000 -28.5 1.379 -1.4 
E,, 5.033 4.756 -5.50 5.027 -0.12 
E,,, 7.575 7.337 -3.14 7.571 -0.05 

100 E, ,  46.402 100.00 115.5 46.532 0.28 
E,, 116.74 110.12 -5.67 116.78 0.03 
E,, 169.50 163.83 -3.35 169.48 -0.01 

It is fair to say that the present calculations d o  not have the accuracy of our previous 
work. There is no  reason obvious to us for this behaviour but we speculate that it may 
be due to the fact that E enters the energy constraint equations in a very non-linear 
way, in contrast to the linear way it appears in the oscillator-type problems. Neverthe- 
less, we d o  obtain results that have the same sort of behaviour as d o  the JWKB 

calculations, indicating that the large-N phase integral approximation is indeed a kind 
of semiclassical limit. We are currently searching for a way to obtain more accuracy 
for applications to the Coulomb-type problems. 

Appendix 

We wish to calculate 

(6, kl exp[-AP(Ko-K,)116, k )  P = (-pU/2E)'/ '  ('41) 

in the limit of large k. Using the shorthand notation (6 )=(& k161& k )  we have the 
following expansion: 

(e-*Br)=( ( - l )"(APr)" 
m=O 

where r = KO - K , .  Now it can be shown that 

( r "') = k"f" ( 6) + "i' k"-"g, ,( 5) 
v = l  

wheref( T, cp)  =fit) = cosh T+sinh T cos cp and g y ( [ )  are functions of 7 and cp we need 
not specify here. Thus the mth term of the expansion is 

We now rescale A as A /  k so that we have 
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Restoring the original coupling constant, in the large-k limit we have 
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